Taxonomic Notes on North American Anobiidae (Coleoptera)

Richard E. Wiute:

Work done in preparation of an illustrated key to the North American gencra of Anobiidate (to be submitted to Amnals Entomoloyical Socity of America) has shown the necessity for changes in the generic placement of certain species; these changes and other notes are presenterl. The removal of Ernobins trapiaoidens Fall and E. champlami Fisher from Ernobins and assignment to Episcrums provides the first North American record of the genus Efisornus.

EPISERNUS Thomson, 1א63. p. 151.
Fall (1905.p.1.32) regarded the genus Episcrnts as doubtitully distinct from Ernobius. However. I find the following characters to be an ardequate basis for distinguishing Episernus from Ernobius. In Episermus the pronotum bears a distinct lateral margin only hasally: the prosternmm before the coxae is equal to $\frac{1}{2}$ to $\frac{1}{+}$ of the coxal diameter ; the antemare are 10-segmented. and the first tarsal segment of the ponterior legs is as long as the following 3 segments combined. In Ernobius the pronotum bears a sharp lateral margin throughout: the prostermm before the coxae is equal to $\frac{1}{4}$ to $\underset{2}{1}$ of the coxal diameter; the antenmae are 11 -segmented (except 10 -sesmented in gentilis Fall), and the first tarsal segment of the posterior legs is no longer than the 2 following segments combined.

In the key to genera by Fall (1905. p. 132) the senus Episcrums will key to Ernobins. Eifiscrnus can be distinguinhed in that the lateral marsin of the pronotimn is distinct only basally, and is abont or indistinet anteriorly : in Ernobius the lateral margin of the pronotnm is di-tinct thronshont.

During this work I have examined a specimen of the type-specios of Episcrmas (E. anyulioollis Thoms.. by monotypy) determinerlly R. Eipanol.
 seduence should be placed after the aconts Sirnohims. For the henefit of American workers a description of the senus Efisernmes (as derised from the two North . Imerican -pectors iollow: :
${ }^{1}$ Accepterl ior puthication lugirot 2R. 1'm, 1 .

 much wider than long. Eve :n conte in size: bulging irom leat. Barger. :
 eve, those of male separated by 1.7 in 2.0 times vertical diameter of an eye. Arterate ? segmented, last three segment: leng themed and widened, those of iemale about 1.5 as long as all preceding mited, those wi male about 2.5 times as long as all prece.... z united; first antennal segment hrowl. arcuate. longest of segments 1 to 7 ; segrem: 2, 3, and 4 similar in length. 2nd hroalest: segments 5 , 6 , and 7 similar in iorm, $7-3$ shortest. Last segment of maxillary and labial palpi similar, elongate. rather naress. broadest basally, bluntly printed apically, about 2 times as long as wide.

Dorsal surface.-Pronotal suriace undulate; pronotum at base abrat eight-iens. as wide as elytra at bave: promotum at side with a sharp, distinct margin onty a: base, margin at middle of side thunt to oholete, margin absent anteriorly. Scure.": small, tab-slaped. distinctly wider than long. Flytra with distinct humeri; surese granulate-punctate as rest of hody, at extreme sides with faint indication oif ras of large punctures.

Ventral surfaci-Prosternum जnort, broad, length beiore cosae erqual to : : coxal diameter: iront coxae tonchat, conical, rather prominent menternum s. . broad, posterior margin broadly. \"-shaped : middle coxae touching, conical, prominen:: metasternum broadly bulging posteriorly, declivous anteriorly: metentiternum e!rngate, narrow. broalest anteriorly, more narrow posteriorly, nearly parallel-site medially: metacoxae bery narrow and elongate, widest medially, narrmbly semarace at center. Abdomen with 5 segments (sometimes a sixth visible), all sutures distinct. straight, 5 segments very similar in length, 2nd somewhat longer than others. Lers long and thin, tarsus oi each leg nearly as long as to as long as it sibia, first tarsal segment of hind legs nearly as long as remaining segments combined. 3rd and tin tarsal segments of all legs lobed beneath. tilm more distinctly on, tarsal claws with a narrow, elongate tooth basally.

Length. -3.0 to 4.7 mum.

Episernus trapezoideus (Fill). 1005. p. 151. NEW C()N1:IN.1TION. Pig. 1.
Episernus champlaini (F゙isher). 1919. p. 2OE: NEW COMRINATFON.
These two specte hase mitil now been placed in Eirnobius but are correctly assigned to the largely European gemus Efisirnus Thomson (1863). 1. 151).

XYLETINUS Latreille, 1809. p. 376.
Xyletinus brevis (White). 1960. p. 235: NEIV COMBINATION.
I originall! described the above species in the genms Eurrilletta on the basis of the elongate last 3 antemal segments. A detailed comparison of the morphongen of Eurvillitta ryletinoides Fall (type-specie- oi Eutrillotta by monoty! aml E. tiond Van Dyke. 1946. p. 85, with . Fvotimus brais (White): . K . ator (Cructzer) (in Panzer. 1796. p. 9). . C. bucephalus (Illiger). 1807. p. 16. and I. pelfatus (Harris). 1836. p. 75 , shows the above change to be tesirable. The only significant rlifference that I find in the extermal anatomy of Euzilltta from that of the alose iour species of Xyletims is that the 3 terminal antennal segments oi Eutrilletta are nearly, or iull, as lome as all precerling united: in I letinus the 3 terminal antemal segments. are equal in length to only the + to t) precerling segments combined. The senitalia of Eurilletta terana. Xytimus hrozis, X. ater. and X. pelfotus show no basic differences; that is. all are symmetrical, with the median bobe elongate and broadest basally. and the lateral lobes about as long as the median lobe. Each lateral lobe is rather lecs-like and has a subapical palp-like process that is broadest apically. In addition, the median hole ni each bears internal spine and hook-like processes.

Xyletinus SPECIES GROUPS

Three natural sroupe of species can be recosnizel within the senus Xyletinuts. In the first gromp (incluting brevis, distens. sequoiae, and grossus) the terminal 3 antemat sexments are as loner a- the 5 to 6 precerlins mited, and the eves are larse. They are reparaterl lyy 1 to 3 times

 examination. J! -hetchas and motes on the-e - Jow tlat they are very similar in antumati immation in X . hreatis. Three \& -peros an properly

 male \&cuitalia

In the second and third specico groups the terminal 3 : anten and eesment: are equal in length to the + to 5 preceling segment, combition in the second. or large-eyed. group (inchurling peltatus. humi : an mucurcus, the eyes are separated by 1 to 3 times the widit of an on seen from the front. In the third. or small-eved, gromp cometins of
 rated by + to 7 times the width of an eve as seen from the front.

It must be noted that the species gracilipes Fall in very aluetrant for the genus. I have seen only Fall's type (USN゙M number (its: 0). It differs from all other members of the genus in that the tarsi are slencler and nearly as long as or equal in length to the tibiae. The tarsi of the other specioof $\mathrm{X} y l e t i m u s$ are stout and $\frac{1}{2}$ to $\frac{2}{3}$ as long as the tibiae. . Whor the ventral surface of the head in gracilipes bears distinct depressions which receive the antemae in repose ; the ventral surface of the head in mont apecie- is feebly to slightly depressed. Two described species (fasciutus and fithesiens have the hearl depressed beneath, the former to as great an exient, and the latter to a lesser extent than does gracilipes. In addition, the palpi of uracilifes are elongate and narrow. Though there is vatiation in the inons of the palpi in the genus, the elongation is more developerl in :matiofes than in any other species.

It is possible that gracilipes deserves being given separate genceric rank (this was also noted by Fall. 1905, p. 203). However, the rank th be accorded fasciatus and pubescons would complicate such a move. Also. within the small-eyed series, there appears to be a mumber of unlescriberl species, and there are puzzling variations in series of mamerl ylecimens. I thorough study of the genus with more material than unw at land will bee necesary for an understanding of these problems and change- in the gemus or additions to it at this time are wot justified.

Examination of the European Nyetinus ater (Crentzer, ha- -hown thi specie- to be very similar to our third (small-eyed) species arom. It alon bear- - light depressinns on the ventrat surface of the head hetween the ex a In an application that has been sutmitted th the Comminime on: Zonk wical
 to designate X. ater as the type-species of . Yletimus.

XESTOBIUM Motachulsily. Nist. p, is
 NEM COMBIN.JTON

 In the must recent Furopean treatment including Hyporn a Espanol.

I detailed comparison of Lestobinm rufotillostun: Deti.) the typeapecies of Kestobinm loy monotypy and original designation). X. abictis Fisher, aud $\mathrm{I}^{\text {. atfini }}$ leconte with Hyprisus plombeltm and H. marginicollis shows only the following differences. In the two species of Hyprisus the pulescence of the dorsal surface is micolorous yellowish, unform in density. and has intermixed. distinctly bristling hairs. Aloo the median elytral suture at the apical ! is clepressed, and there is a degree of asymmetry in the median lobe of the male genitalia. In the above species of Kistobimm the pubescence of the dorsal surface is appresed and bicolored with irregular patches of generally dense. golden pubeecence contrasting with the much sparser dark pubescence. Also, the median elytral suture at the apical ! is not clepressed, and the male genitalia are sommetrical. I rogard the abose differences as too feeble a basis for separation of Hyperisus from listobimm, and regard the names as symmms.

CAENOCARA Thomsum, 1N:5. p. 907. Caenocara californica I.eConte.

Cacnocara califarnion leconte. 1878. p. +12.
Cacnocura ocridens Casev, 1885. p. 330.
 Casey (1924.1.2 0 I) clamed that his occidens was not even closely relaterl (1) californica. "having only about hali the weight and being of a pake picers. color. uniformly throughont my series of three -pecimens, besides differing in many other wats."
 mumber foghan with two -pecimens retermined be laill as colfornion. The three specimens of ofiodens are all about 1.4 mon in lensth, are reddish brown to rlark redrlivh brown above, and reddial brown w, bearly black below. The two - wecimens of culifornica are 1.5 :and bearly 2.0 mm in lemgth: the smaller is a little darker than any of the there pecimene of occidens, and the larser is distimety darter than and ofidens specimens.

> PTILINUS Nüller, 176t. 1. xii.
> Ptilinus acuminatus Casey, 1\&) 1 ,

Hopping (192s, p. S) synonsmized P. achminatus (anes and P. bu I.econte. I have compared Casey's three female type (type and two pame types with (SSN number 4 SSAS) with basalis and find actuminutas to iofe a valicl species. The characters presented by lall (1905. p. 279) for diotinsuishing the two species are workable.

Ptilinus flavipennis Casey, 1898, p. 64

Fall (1905, p. 281) synnmized P. fluzipennis with P. basalis, Leconte however, comparison of Caseys mate type and only speeimen of Ptilimes flailipennis with a lengtlyy series of P. basalis Lec. has shown flazipennis to be a valid species distinct from basulis, as was stated by Casey (192t, p. 207). The type of flaripenmis is 2.7 mm in length: the ramus of the third antennal segment is a little shorter than the segment itself. and the base of the ramus extends past the middle of the segment. The ramus of the fourth segment is 2 times as long as the segment, and the ramu: of the fifth segment is + times as long as the segment. Males of basilis vary from 3.0 to 4.6 mm in length: the ramus of the third antemal segment is a little longer than the segment and its base extends to the middle of the sesment. The ramus of the fourth segment is abont + times as lons as the segment, and the ramus of the fifth segment is about of times as lones as the segment.
 Oligomerus oregonensis Hatch. 10 (6), 1. 316.

Melville Hatch in his Beetles of the Pacific Vorthwest deseriberl and illustrated the above species. However. his illustation is clearly of a beetle belonging to the genme lytims. and the drawing does not astee with his deseription of the antennate and elytral striate. lat the deacripent antemal segments ${ }^{9}$ to 11 are termed "sreatly embarsed." and the elytrat -triate an composed of "series of elongate pmotures." The drawing shows the last three antemal segments to be but slightly enlarged and the elserat

> L.TFR.ITI KF (ITE:O
 land. Sci. 1:28.3 3,
 Soce．0（2）： 0113.

1924．Mannir on the Colenterat．Vol．11．Lancanter．Pa．：Lancanter Pren 347 1ヶ．
 Rev．Eqpand．Fint．Tome NL nos．1－2，1）123－1．37．
Fall．II．C．1905．Revivion of the Ptinidae of Boreal America．Trans．American

lisum．W゙．S．191＂．Fine new species of Ptinid beetles．I＇roc．L＇mited States Nat． Mans． $55: 2052(0)$.
H．tew，II．H．1\％n．Family Anobidae．In Beetles of the Pacific Northwest，part 3. Unis．Washington l＇uls．Biol．16：309－327．
Harris，T．WV．1s30．Claracteristics of some previously described Xiorth American Coleopterons insects．．．Trans．Hartiord Nat．Hist．Soc．1：厅ミーの1．
Hoppisc，K．192s．Some motes on examination of types of Colenptera in the Leconte and Casey coltections．Canadian Fnt． $60(1): 6-8$ ．
llatifr，K．1801．Magazin iür Insetenkunde．Vol．1，pts． 1 \＆2．Braunschweig． рр．1－260．
——．1807．Magazin iür lnsectenkunde．Vol．6．Braunschweig．ip．1－370．
I．atrenle．1＇．A．180\％．General Crustaccorum et Insectorum．．．Viol．t．Paris． 1－3）9．
Lenove，I．I．1850．Catalngue of the Coleontera of Fort Tejom．Calionmia．Proc． Icad．Nat．Sci．Mhiladelphia 11：69－90．
－1878．．Viditional descriptions oi new species In Schwarz．The Coleoptera oi Florida．I＇roce．Amer．Phil．Soc．17：373－434．
 cle 1．Bull．Soc．Imp．Mat．Moscou，Vol．18，pt．1，p1．1－127．

Pavzer，G IV．F．17\％．Fauna Insectorum fermanica initia ．．． 3 ： 9.
Remtenbacher，L．1849．Fauna Austriaca．Die Käfer．Weim．1－x×3．
Reckes，H．，Jk．1958．Hyperisus mar！inicollis（hecome）a new combination．I＇an－ Pacific Ent． $3+(3): 1+6$ ．
Thomsos，C．（；1859．Shandinaviens Coleoptera，－ymptivt beartntanke Tome I． Lund．pi．1－2 $\boldsymbol{2}^{0}$ ．
——1863．Skandinasiens Colempera，symptivkt bearbetade．Tome V：Lund．pip 1－340．
Vondrie，E．C．19＋f，New species of North American Coleripera．Pan－Pacific Ent．22（3）：8ts？
 （Cobenterat Imbiiidac）．Ohio Jour．Sci． $1,0(t): 235-230$.

